
Fault Tolerance via Replication in
Coarse Grain Data-Flow1

Anh Nguyen-Tuong, Andrew S. Grimshaw and John F. Karpovich

University of Virginia, Thornton Hall, Department of Computer Science
Charlottesville, VA 22903

Email: {nguyen | grimshaw | karp}@virginia.edu

URL: http://www.cs.virginia.edu/~an7s, http://www.cs.virginia.edu/~grimshaw,
http://www.cs.virginia.edu/~jfk3w

1. Introduction

Recent advances in network technology promise to make gigabit-per-second
bandwidth between remote hosts a reality in the near future. This increase in bandwidth
paves the way for increased exploitation of distributed computing resources. Coupled
with advances in distributed memory parallel compiler technology, there is strong
reason to believe that wide-area distributed parallel processing will be an increasingly
popular and important programming paradigm. Parallelizing and distributing program
sub-tasks has the potential to increase performance for many applications while also
improving the overall utilization of system resources. Unfortunately, there is a
downside. When a program is partitioned into sub-tasks, each sub-task is distributed to
potentially a different processor. As the number of processors employed by an
application increases so does the chance that the application will fail due to a host/
processor failure.

At the University of Virginia, we have experienced first hand the problems caused
by host failures in distributed systems while developing and using a prototype for the
Legion project2 [13][14]. The objective of Legion is to construct the software
environment to enable a nation-wide or world-wide virtual computer capable of
supporting distributed and parallel applications. Our current prototype, which we call
the Campus-Wide Virtual Computer (CWVC), contains a mix of over 90 workstations
and an IBM SP-2 multicomputer. Even in this relatively small environment, we are
frequently experiencing host failures. On the scale of the envisioned nation-wide
system, host failures will simply be a fact of life and must be dealt with accordingly.
User applications, especially those that are critical or are composed of many distributed
components, must be resilient to host failures. Fortunately developing fault tolerant
parallel applications does not need to be difficult.

In this paper we show that by developing applications using the data-flow model
of parallel computation there is a simple method for providing fault-tolerance. The key
to our approach is in exploiting the functional nature of data-flow programs in the fault-

1. This work is partially funded by NSF grants ASC-9201822, NRaD contract N00014-
94-1-0882, and ARPA grant J-FBI-93-116.

2. Information on Legion is available on the WWW at http://www.cs.virginia.edu/~legion

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Fault tolerance via Replication in Coarse Grain Data-Flow

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

tolerance mechanisms. Recall that data-flow computations are modelled by actors, arcs,
and tokens. Actors are computation primitives, tokens carry data or control information,
and arcs are used to model the dependencies between actors. The distinguishing feature
of actors in terms of fault tolerance is their idempotent nature: an actor presented with
the same tokens will produce the same result. Thus, fault-tolerance can be easily
achieved through actor replication, i.e. replicate an actork times and use the first
available result (discard later arriving results).

To illustrate this approach, we implemented automatic actor replication within the
Mentat system [9][12]. Mentat is an object-oriented, data-flow based, parallel
processing system. We used a synthetic pipeline program as a simple application to
demonstrate the power of the approach and to explore the trade-offs between fault-
tolerance, performance and resource consumption. Resource consumption is often
neglected but must be taken into account as we move towards an environment in which
machines are shared. We plan to expand our results in the future using applications
already in use on the CWVC, e.g. DNA sequence comparison, VLSI routing, to name
just a few.

The remainder of the paper is organized as follows. We first present a brief
overview of the Mentat system and its execution model (Section 2). We describe the
protocol used to transparently replicate actors and illustrate the process of converting
Mentat source code to an actual run-time implementation (Section 3). We show
experimental data taken on a synthetic pipeline application using our transparent
replication method (Section 4) and analyze the results (Section 5). We then present an
optimization to our protocol which will be included in the next release of Mentat
(Section 6). Finally, we discuss related work (Section 7) and conclude (Section 8).

2. Mentat

Mentat3 is a high performance, object-oriented parallel processing system. There
are two primary aspects of Mentat: the Mentat Programming Language (MPL) and the
Mentat run-time system. MPL is an object-oriented programming language based on
C++. The granule of computation is the Mentat class member function. The
programmer is responsible for identifying those object classes whose member functions
are of sufficient computational complexity to allow efficient parallel execution.
Instances of Mentat classes are used like C++ classes, freeing the programmer to
concentrate on the algorithm, not on managing the environment.

The data and control dependencies between Mentat class instances involved in
invocation, communication, and synchronization are automatically detected and
managed by the compiler and run-time system without further programmer
intervention.

Mentat classes are denoted by the inclusion of the keyword “mentat” in the class
definition, as in the mentat classsw_worker shown in Figure 1. The keyword
mentat tells the compiler that the member functions of the class are worth executing

3. Information on Mentat is available on the WWW at http://www.cs.virginia.edu/~mentat

in parallel. Mentat classes may be defined as eitherpersistent or regular. Instances of
regular Mentat classes are logically stateless, thus the implementation may create a new
instance to handle every member function invocation. PersistentMentat classes
maintain state information between member function invocations. This is an advantage
for operations that require large amounts of data, or that require persistent semantics.

Figure 1Mentat class definition

A Mentat object is an instance of a Mentat class, and possesses a name, a thread
of control, and an address space. Because Mentat objects each have their own address
space they are address space disjoint. Therefore,all communication between Mentat
objects and between Mentat objects and main programs is via member function
invocation.

2.1. Mentat Execution Model

The Mentat execution model is based on the macro data-flow model (MDF [10]),
an extension of the pure data-flow model. MDF is one of several large grain data flow
models [3][6][8] that expand on traditional data flow. The salient features of MDF are
that it incorporates the notion of state, adds the ability to dynamically create graphs, and
provides coarse grained actors. In MDF, actors with states are said to bepersistent
actors while stateless actors are calledregular actors (persistent and regular actors are
implemented by persistent and regular Mentat objects).

The Mentat run-time system implements a virtual macro data-flow machine that
transparently constructs program data-flow graphs, schedules actors on processors, and
manages communication and synchronization. The token matching unit (TMU)
implements the pure data-flow subset of the MDF model and is responsible for matching
tokens and for enabling an actor when all its tokens are present. When all of the tokens
required for an actor computation have arrived, the TMU issues a scheduling request to
the system scheduler. The scheduler selects a processor to service the request and
notifies the TMU, which then forwards the tokens to the actor so that it may execute. To
distribute the workload associated with regular actors, there is one TMU per host and
work is divided among them via a simple hash function.

The mapping from a sample MPL source code fragment that uses regular objects
to the implementation is shown in Figure 2. At run-time, calls made to regular object
functions (actors) are transformed into a data-flow graph (Figure 2b), which is then

regular mentat class sw_worker {
// private data and function members
public:

result_list*compare(sequence*,libstruct*,paramstruct);
};

The keyword “mentat” tells the compiler to treat instances of this class differently. The
“regular” modifier indicates that instances of this class are stateless, i.e., they are pure
functions.

acted on by the run-time system to deliver the proper arguments (tokens) to the
appropriate object’s function (Figure 2c). For more information on the Mentat system,
including how it detects data dependence and builds data-flow graphs, see [10][12].

Figure 2 Transformation from source code to execution

3. Extending the model to support fault-tolerance

To provide transparent fault-tolerance we extend the run-time system to
automatically replicate regular object execution. We first describe the interface and
show that users can easily achieve fault-tolerance. We then describe the implementation
of the replication protocol.

Example 1

First the graph is constructed at run-time in the main program. The data-flow graph is
mapped onto the implementation as follows:

• A message containing the token “5” is sent to a TMU (TMU1 in Figure 2c). The
token contains a computation tag1 that uniquely identifies the actor and the number
of tokens required to enable the actor. The message also contains a copy of the
program graph.

• Upon receiving the token, TMU1 determines that the actor (A.foo()) may fire
because all necessary tokens for the actor have arrived. TMU1 makes a scheduling
request to the system scheduler which creates an instance of object A and returns
A’s physical address (host id and port number).

• TMU1 forwards the tokens and computation tags to object A.
• Object A executes function foo().
• When A.foo() finishes, it must send the result along all outgoing arcs in the

program graph representation. Since B is a regular object, the result is passed to a
TMU that is responsible for matching B.bar()’s tokens.

• B.bar() is handled similarly with the end results sent back to the main program.

1. Computation tags are similar to token colors [21].

A.foo

B.bar

5

main

(b) Data-flow

(0) main() {
(1) object_class1 A;
(2) object_class2 B;
(3) x=B.bar(A.foo(5));
(4) }

A.foo

B.bar

5

main

TMU1

TMU2

(c) Execution(a) Source code

3.1. User interface

Users specify the degree of replication by creating an instance of the class
replication_manager and setting the level of replication desired. The level of
replication is valid within the scope of the declaration. The interface for
replication_manager is shown below:

class replication_manager {
public:

void set_num_replicates(int howmany);
replication_manager(howmany);
~replication_manager();

};

The constructor for thereplication_manager class saves the current
replication setting. Users specify a new setting within the constructor and can override
their initial setting via the methodset_num_replicates(). The new setting is
then valid until the flow of control exits the current scope, at which point the destructor
is implicitly invoked and restores the saved setting. The following code fragment
illustrates the use ofreplication_manager:

main()
{

int a;
object_class X, Y;
replication_manager ft_policy1(3); // replication level is 3

a = X.op1 (Y.op2());
{ // new scope

int b;
replication_manager ft_policy2(2); // replication level is now 2

b = X.op1 (Y.op2());
}
// replication level is restored to 3

}

3.2. Implementation

The Mentat run-time system transparently replicates regular objects by
duplicating the tokens and sending them to distinct TMUs. The choice of the additional
TMUs is based on a hash function which is guaranteed to select distinct TMUs.
However, naive duplication of tokens will lead to an exponential growth of tokens and
computations. If we consider the data-flow graph in Figure 3b, naive replication would
duplicate the “5” token and two A.foo actors would be created. Similarly, if the result
from each A.foo actor were duplicated, four B.bar’s would be executed. For larger
graphs this exponential growth would quickly overwhelm the system. To avoid
exponential growth each TMU tracks the tokens it has already received. When, under

normal circumstances, the duplicate tokens for a computation arrive, the TMU discards
them. By discarding duplicates we avoid instantiating extra duplicate computations.

Figure 3 Implementing replication of regular objects

One critique of this technique is that one cannot know how long to “remember”
which tokens have already been consumed. In fact this is not a problem. We use a fixed
size table of past tokens. When a new slot is needed we throw away the token with the
oldest timestamp. In the unlikely event that a duplicate token arrives after we have
“forgotten” about it we simply schedule a redundant computation whose result will be
thrown away later.

Example 2

We modified the program of example 1 in Figure 2 to set the replication level to two (Figure 3a).
Execution proceeds as follows (Figure 3c):

• A message is created that contains the token “5”, the program graph, and the level of
replication. This message is duplicated and sent to two distinct TMUs. The TMUs are
chosen based on the computation tag for A.foo() using the primary and secondary hash
function.

• Each TMU independently instantiates a copy of object A using the protocol described
in Section 2.1. The actor corresponding to A.foo() is thus replicated.

• The result from each A.foo() is forwarded to each of the TMUs handling the next
replicated actor (B.bar()). The TMU has been modified to detect duplicate tokens and
discards the duplicates to prevent an exponential growth of objects instantiated.

(0) main() {
(1) object_class A, B;
(2) replication_manager ft_policy(2);
(3) x = B.bar(A.foo(5));
(4) }

A1.foo

B3.bar

5

(b) Data-flow graph

main

(a) Source code

A1.foo

B3.bar

5

main

TMU1

TMU3

A2.foo

B4.bar

TMU2

TMU4

5

(c) Execution

A2.foo

B4.bar

5

main

Only minor changes to the TMU were required. No coordination is required
between replicated objects nor between TMUs. The failure of any k-1 of the TMUs
handling ak-replicated actor, or k-1 of the replicated objects, does not prevent the
successful completion of the program, though a current requirement is that the host
where the main program is running does not fail. Finally, the replication algorithm is
decentralized and hence scalable.

The TMUs responsible for a given replicated object, i.e. TMU1 and TMU2 or
TMU3 and TMU4, (Figure 3) are placed on distinct hosts by the Mentat system. Mentat
does not currently guarantee that the replicated objects themselves execute on separate
hosts, though this is likely to be the case. Assuming a random placement of objects and
one host failure, the probability that all objects are placed on the failed host is given by:

 wheren is the number of replicates andz the total number of hosts.

Under saturation, the Mentat scheduler [11] effectively uses a random placement policy.

4. Synthetic Pipeline Application

To explore the trade-offs between fault-tolerance, CPU resource consumption, and
performance, we have created a synthetic pipeline application. In this application, the
work is divided into independent pieces that flow through a two-stage pipeline with the
results collected by the main program.

We have implemented two versions. The first version is a non fault-tolerant
version using standard Mentat code and the non-enhanced run-time system. The second
version is fault-tolerant employing the transparent replication method. Section 4
describes the implementation of each version in more detail while Section 5 discusses
our performance results and demonstrates the trade-offs between fault-tolerance,
resource consumption and performance.

4.1. Original MPL version

The non fault-tolerant version and its data-flow graph representation are shown in
Figure 4. On line 3, we declare two regular objects that are the data processing filters.
The number of iterations in the pipeline isNUM_RESULTS. The data flows through the
two filters in a pipeline fashion before being stored in an array back in the main
program. The data-flow graph generated from the source code implicitly shows the
independence of the computations. Thus, the equivalent of a DO_ALL loop is
automatically achieved.

P n z,() 1

z
n

----=

Figure 4 Original source code and data-flow graph

4.2. Transparent Replication Version

For the transparent replication method, the code is identical to the original code
except for the specification of the replication policy on line 4 (Figure 5). The number of
replicates is related to the level of fault-tolerance desired. By default, all regular objects
are 1-replicated. In general, ak-replicated object will tolerate k-1 failures assuming that
all objects are placed on a different host. Setting the number of replicates high will
improve the fault-tolerant characteristics of the application at the cost of higher resource
consumption and possibly worse performance (depending on the number of hosts
available).

Figure 5Source code for transparent replication method

(0) main() {
(1) my_data the_data[NUM_RESULTS];
(2) my_results result[NUM_RESULTS];
(3) data_processor dp1, dp2;
(4) replication_manager ft_policy(number_of_replicates);
(5)
(6) for (i = 0; i < NUM_RESULTS; ++i)
(7) result[i] = dp2.process(dp1.process(the_data[i]));
(8) }

5. Results

When evaluating a fault-tolerance mechanism for a parallel computing
environment we must keep firmly in mind that performance is theraison d’être of

(a) Source code for original non fault-tolerant Mentat version

(0) main() {
(1) my_data the_data[NUM_RESULTS];
(2) my_results result[NUM_RESULTS];
(3) data_processor dp1, dp2; // these are regular objects
(4) for (i = 0; i < NUM_RESULTS; ++i)
(5) result[i] = dp2.process(dp1.process(the_data[i]));
(6) }

(b) Data-flow graph representation

dp1

main

dp2

main
dp1 dp2

parallel computing. In a shared computing environment with multiple users, resource
consumption is also an issue; any resources used to ensure fault-tolerance for one
application cannot be used by another application. A design that incurs high overhead,
recovers failed computations slowly, or uses large amounts of resources will not be used
if the price is too high.

To determine the relative strengths and weaknesses of the transparent replication
method, we tested its performance with a synthetic pipeline application and used the
non-fault tolerant implementation as a baseline. We tested the transparent replication
method under no failure and single failure scenarios to determine its recovery time
characteristics. We tested each configuration on a variety of workloads, ranging from 1-
32 pipeline iterations with each stage of the pipe taking approximately 13 seconds4. The
times presented below are the average start-to-finish wall clocktimes over 25 runs on a
dedicated network of 8 Sun SparcStation2 workstations.

5.1. Non Fault-tolerant Baseline Case

In Table 1 we show the average wall clock time elapsed for the baseline case with
no failures. Notice that for 1 to 4 iterations of the pipe performance remains nearly
constant. This is because Mentat automatically detects the independence of each
iteration of the main loop and immediately schedules the first stage of the pipeline
across all iterations. The theoretical limit for the pipeline is reached with 8 iterations. In
practice, this limit is often not achieved because the scheduler may place multiple
objects on the same host and thus the performance degrades as the number of iterations
increases to 8.

5.2. Transparent Replication

An advantage of the transparent replication method is that it essentially provides
instantaneous recovery in the presence of failure. Moreover, it is generic and easy to use.
Applications are not limited to a particular structure, as the Mentat run-time system can
handle arbitrarily complex data-flow graphs. The programmer sets the replication level
for objects and does not need to worry about the fault-tolerance protocols involved. The
main drawback of this method is its high usage of CPU resources.

Table 1 shows performance and resource consumption with the level of replication
set to 2. Resource consumption is directly related to the replication level and thus twice
as many resources are consumed. When the available set of hosts is saturated with
objects, performance decreases in relation to the non fault-tolerant baseline case as
replicates delay the execution of other objects. This effect can be seen especially for 16
and 32 iterations, where performance respectively degrades by 28% and 55%. On the
other hand, when the number of hosts exceeds the number of objects, there is almost no
performance penalty.

4. There is nothing special about 13 seconds. In fact, the granularity could be smaller by
two orders of magnitude.

There is no significant difference in performance between the 0 and 1 host failure
case with the replication level set to two. This is expected since the objects that were
placed on the failed host have a duplicate on another host. Resource consumption is
slightly lower with one host failure as the objects that are placed on the failed host only
partially execute or do not execute at all.

6. Dormant replicates

In the previous replication technique, replicated actors were always active - they
fired as soon as their tokens were matched. The result was a profligate use of resources
— even when there was no failure. To address the resource consumption problem we
now introduce the concept of dormant actors. A dormant actor does not fire immediately
when enabled. Instead, its TMU monitors the state of an active actor by periodically
sending ping messages. When the active actor fails to respond within some specified
time interval, the TMU reissues the actor computation.

The combination of active and dormant actors affords users the flexibility of
controlling the resource consumption and aggressiveness of their replication policy. By
using dormant actors, users may reduce the consumption of CPU resources while
arbitrarily increasing the level of fault-tolerance. However, they may pay a performance
penalty in the presence of failures as time would be lost in (1) the partial work already
performed by the failed object, (2) detecting failure, and (3), restarting and re-executing
the computation. By judiciously choosing the number of active actors, the number of
dormant actors and their associated ping intervals, users may maximize their objective
function, whether it be to achieve the best performance, the efficient use of CPU
resources or a combination of both. This approach does not enforce a particular policy
but leaves that decision in the hands of the application writer.

Table 1. Performance and CPU resources consumed
with 0 & 1 host failure simulated

No host failure 1 host failure

Baseline 2-replicated 2-replicated

Iterations

Time
(sec)

Total
Resources
 (CPU sec)

Time
(sec)

Total
Resources
(CPU sec)

Time
(sec)

Total
Resources
(CPU sec)

1 27 26 26 52 28 50

2 28 52 27 104 29 95

4 33 104 36 208 39 196

8 50 208 58 416 58 370

16 71 416 91 832 93 770

32 120 832 186 1664 191 1540

6.1. Interface for specifying active and dormant actors

Users specify the replication policy by creating an instance of a new
replication_manager class and setting the number of active actors, the number
of dormant actors and their ping intervals. The interface is shown below:

class replication_manager {
public:

void set_num_active(int howmany);
void set_num_dormant(int howmany, int pingInterval);
void set_num_dormant(int howmany, int pingIntervals[]);
// constructors
replication_manager(int numActive);
replication_manager(int numActive, int numDormant, int pingInterval);
replication_manager(int numActive, int numDormant, int pingInterval[]);
~replication_manager();

};

Note that there are two ways of setting the ping interval. In the first, users specify
the ping interval in seconds for all dormant objects. In the second, users specify the ping
interval for each dormant object. Figure 6 illustrates the use of the
replication_manager class.

6.2. Implementation

The improved replication protocol is much more complex and requires changes to
both TMUs and regular objects. Replication is still achieved by duplicating tokens and
sending them to distinct TMUs, except that now, the level of replication is specified by
summing the number of active and dormant replicates. Moreover, we require at least one
active object. To clarify the description of the new protocol, we distinguish between
active and dormant TMUs, i.e. TMUs that handle active objects or dormant objects
respectively5. We now describe the protocol for both kind of TMUs.

Recall that in the original protocol TMUs make a scheduling request and then
immediately forward the tokens to the newly instantiated object. In the new protocol,
active TMUs must also send the object’s name to dormant TMUs so that the latter can
periodically ping the object. Dormant TMUs do not make a scheduling request when the
tokens are matched but instead start monitoring the enabled actor by using the ping
interval P associated with the actor. If within P seconds, the dormant TMU has not
received the name of the active object from an active TMU, it will go ahead and
schedule another instance of the actor. Otherwise, the dormant TMU pings its associated
active object every P seconds. If the active object fails to respond within P seconds, the
dormant TMU considers it dead and reschedules another instance.

The implementation of regular objects must also change. In addition to forwarding
their results to the next nodes in the data-flow graph, regular objects must also notify all

5. TMUs may be both active and dormant — they are active or dormant with respect to a
particular actor.

dormant TMUs that they have finished their computation. Otherwise, dormant replicates
would fire within at most P seconds of completion of the active replicate. All dormant
TMUs associated with the finished computation can then stop monitoring the status of
replicated active objects and discard the unused tokens.

Note that we define failure as the inability to respond. The active object may in
fact be alive but may be unable to respond because of a network failure, a processor
overload, or some other problems. While we may schedule a redundant computation as
a result of our definition of failure, the algorithm is still correct since actors may be
safely replicated due to their idempotent nature. Of course, the downside of false failure
is unnecessarily increased resource consumption.

Figure 6 Replication with active and dormant regular objects

Active TMUs use a simple round-robin scheme to select their associated dormant
TMUs6. A possible result of this assignment is that an active object may be monitored
by more than one dormant TMU. If the active object were to fail, then multiple copies
of the object would be started. To alleviate this problem, the first dormant TMU to

6. TMUs are ordered by using the same hash function on the computation tag.

(0) main() {
(1) object_class A, B;
(2) // 1 active, 1 dormant with a 30 sec. ping interval
(3) replication_manager rp (1,1,30);
(4) x = B.bar(A.foo(5));
(5) }

(a) Source code

A1.foo

5

main

TMU1

TMU3

TMU2

TMU4

5

(c) Execution

B3.bar

A1.foo

B3.bar

5

(b) Data-flow graph

main

A2.foo

B4.bar

5

main

ping

dormant

Legend

active I’m alive

ping
I’m alive

restart the failed computation informs the other dormant TMUs of the newly activated
object’s physical address. Consider the scenario in Figure 7 where the replication policy
is set to 2 active and 3 dormant objects. TMU2 detects A2’s failure, restarts the
computation (A3.foo) and sends TMU3 A3’s physical address. TMU3 then pings A3
instead of the failed A2.

Even with this algorithm, it is still possible to unnecessarily instantiate multiple
copies of a computation. For example, TMU2 and TMU3 could have simultaneously
detected A2’s failure and independently restarted the computation. However, this is a
worst case scenario that only affects the resources consumed and not the correctness of
the result.

Figure 7 Dormant TMUs sharing the same active object

7. Related work

While there is a rich literature in fault-tolerance for distributed and real-time
systems (see for examples the proceedings of Fault-Tolerant Computing Symposium
(FTCS) and Real-Time Operating Systems (RTOS)), there has been much less done in
the area of fault-tolerant parallel processing systems. Most of the work has concentrated
on fault-tolerant hardware, e.g. fault-tolerant networks and system reconfiguration after
a fault. There has been some though, for example, FT-Linda [4], PLinda [15], Orca [16],
Calypso [5], and Fail-safe PVM [17]. These systems use a combination of well known
mechanisms such as replication, transactions, message logging, or checkpoints and
rollbacks to provide fault-tolerance.

Mentat differs from these systems in that its underlying computational model is
based on data-flow. Moreover, Mentat and macro data-flow (MDF) differ from other
large grained data-flow systems such as Paralex [2], CDF [3], HeNCE [6], and Code/
Rope [8] in that program graphs in MDF are dynamic and generated at runtime. In
Mentat, the program graphs are generated by the compiler and run-time system, unlike
[2][6][8], where the programmer is responsible for generating the program graphs using

A1.foo

A2.foo

TMU1

TMU2

TMU3

Dormant TMUsActive objects

ping

ping

ping

A1.foo

A3.foo

TMU1

TMU2

TMU3

Dormant TMUsActive objects

ping

ping

ping

A3’s physical

A2 fails

A2.foo

address

a graphical interface. Paralex uses the ISIS toolkit to provide fault-tolerance via the
coordinator-cohort model [7]. To our knowledge Paralex is one of the few data-flow
parallel processing system that provides direct support for fault-tolerance. ATAMM
[19] is another but its application domain is embedded real-time systems.

The techniques described in this paper are easily applicable to any coarse grain
data-flow systems. However, replication is not novel and is a well understood concept
even in the general case of objects/processes with state [18][20]. Our work differs in that
we have focussed on the special case, i.e. stateless objects, and exploited their
idempotent nature to provide easy-to-use fault-tolerance. Further, the replication
protocol is greatly simplified as the system does not need to maintain consistency
between replicates or take checkpoints and rollback.

8. Conclusion

Wide-area parallel processing systems will soon be available to researchers to
solve a range of problems. It is certain that host failures and other faults will be an every
day occurrence in these systems. Unfortunately contemporary parallel processing
systems were not constructed with fault-tolerance as a design objective.

The data-flow model, long a mainstay of parallel processing, offers hope. The
model’s functional nature, which makes it so amenable to parallel processing, also
facilitates straight-forward fault-tolerant implementations. It is the combination of ease
of parallelization and fault-tolerance that we feel will increase the importance of the
model in the future, and lead to the widespread use of functional components.

To illustrate our point, we have modified the Mentat run-time system to provide
transparent replication of data-flow actors. The advantages of this method are that it is
easy to use, programmers simply set the level of replication desired in the parts of their
program that need fault-tolerance, and generic, it works with arbitrarily complex data-
flow graphs. Its main drawback is the high consumption of CPU resources.
Furthermore, we have found that while setting the level of replication high can improve
the fault-tolerance characteristics of an application, it can also have adverse effects on
performance. When hosts are saturated with objects, performance decreases as
replicated objects compete with other objects for CPU resources. However, we have
outlined an optimization that can significantly reduce the amount of CPU resources
consumed while giving users a flexible interface for controlling the replication policy.

Using Mentat, programmers have at their disposal a “dial” with which to trade-off
fault-tolerance, performance and resource consumption. Where programmers choose to
set the “dial” ultimately depends on the relative importance that they attach to fault-
tolerance, performance and resource consumption.

Now that we have demonstrated that robust techniques can be added to our
existing system, the next steps are to implement the optimized replication method and
investigate its performance and resource consumption characteristics with a diverse set
of applications on the University of Virginia’s campus-wide virtual computer. In

addition, we plan to provide mechanisms to support fault-tolerance for persistent
objects.

9. Acknowledgments

We would like to thank Adam Ferrari and Mark Hyett for their suggestions in
writing this paper. We would also like to thank the reviewers for their insightful
comments on an earlier draft of the paper.

10. References

[1] T. Agerwala and Arvind, “Data Flow Systems,” IEEE Computer, vol. 15, no. 2, pp. 10-13,
February, 1982.

[2] O. Babaoglu et. al., “Paralex: An Environment for Parallel Programming in Distributed
Systems,” Technical Report UBLCS-92-4, Laboratory for Computer Science, University
of Bologna, Oct. 1992.

[3] R. F. Babb, ”Parallel Processing with Large-Grain Data Flow Techniques,” IEEE Com-
puter, pp. 55-61, July, 1984.

[4] D. Bakken and R. Schlichting, “Supporting fault-tolerant parallel programming in Linda,”
Technical Report TR93-18, The University of Arizona, 1993.

[5] A. Baratloo, P. Dasgupta and Z. M. Kedem, “CALYPSO: A Novel Software System for
Fault-Tolerant Parallel Processing on Distributed Platforms,” Proceedings of the Fourth
IEEE International Symposium on High Performance Distributed Computing, pp. 122-
129, Washington, D.C., August 1995.

[6] A. Beguelin et al., “HeNCE: Graphical Development Tools for Network-Based Concurrent
Computing,” Proceedings SHPCC-92, pp. 129-136, Williamsburg, VA, May, 1992.

[7] K. Birman et. al., “Implementing Fault-Tolerant Distributed Objects,” IEEE Transactions
on Software Engineering, Vol. SE-11, No. 6, June 1985.

[8] J. C. Browne, T. Lee, and J. Werth, “Experimental Evaluation of a Reusability-Oriented
Parallel Programming Environment,” IEEE Transactions on Software Engineering, pp.
111-120, vol. 16, no. 2, Feb., 1990.

[9] A. S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Mentat,” IEEE
Computer, pp. 39-51, May, 1993.

[10] A. S. Grimshaw, “The Mentat Computation Model - Data-Driven Support for Dynamic
Object-Oriented Parallel Processing,” Computer Science Technical Report, CS-93-30,
University of Virginia, May, 1993.

[11] A. S. Grimshaw and V. E. Vivas, “FALCON: A Distributed Scheduler for MIMD Archi-
tectures”, Proceedings of the Symposium on Experiences with Distributed and Multipro-
cessor Systems, pp. 149-163, Atlanta, GA, March, 1991.

[12] A. S. Grimshaw, J. B. Weissman and W. T. Strayer, “Portable Run-Time Support for
Dynamic Object-Oriented Parallel Processing”,To appear in the ACM Transactions of
Computer Systems.

[13] A. S. Grimshaw, A. Nguyen-Tuong and W. A. Wulf, “Campus-Wide Computing: Early
Results using Legion at the University of Virginia”, Technical Report CS-95-19, Depart-
ment of Computer Science, University of Virginia, 1995.

[14] A. S. Grimshaw et. al., “Legion: The Next Logical Step Toward a Natiowide Virtual Com-
pute,” Computer Science Technical Report, CS-94-21, June 8, 1994.

[15] K. Jeong and D. Shasha, “Plinda 2.0: A transactional/checkpointing approach to fault tol-
erant Linda,” Proceedings of the 13th Symposium on Reliable Distributed Systems, 1994.

[16] M. Kaashoek et. al., “Transparent fault-tolerance in parallel Orca programs,“Symposium
on Experiences with Distributed and Multiprocessor Systems, 1992.

[17] J. Leon, A. L. Fisher, P. Steenkiste, “Fail-safe PVM: A portable package for distributed
programming with transparent recovery”, Technical Report CMU-CS-93-124, School of
Computer Science, Carnegie Mellon University, PA, February 1993.

[18] M.C. Little and S.K. Shrivastava, “Replicated K-Resilient Objects in Arjuna”, Proceedings
of the 1st IEEE Workshop on the Management of Replicated Data, Houston, pp. 53-58,
November 1990.

[19] R. A. Obando and J. W. Stoughton, “A Performance Prediction Model for a Fault-Tolerant
Computer During Recovery and Restoration,” NASA Contractor Report 195074, NASA
Langley Research Center, Virginia, February 1995.

[20] D. Powell, “Delta-4: A Generic Architecture for Dependable Distributed Computing,”
ESPRIT project 2252 Research Report, Springer Verlag, 1991.

[21] A. H. Veen, “Dataflow Machine Architecture,” ACM Computing Surveys, pp. 365-396, vol.
18, no. 4, December, 1986.

